
Design Manual
for

Automatic Random Regression
Testing with Human Oracle

Prepared by: Ivan Maguidhir, C00002614, February 2011

Table of Contents
1. Introduction..4

1.1 Purpose...4
1.2 Scope..4
1.3 Goals and Requirements..4

2. System Overview..5
3. System Architecture..5

3.1 Architectural Strategies..5
3.1.1 Third-party libraries...5

CppUnit ...5
Xerces-C...5
Cross-platform Library...5

3.2 Architectural Design..6
3.3 Decomposition Description...6

3.3.1 CmdLine component..6
3.3.2 AutoUnit library component..6
3.3.3 Sequence diagrams...7

Create Tests..7
Configure Testing...9
Run Tests..10
List Tests...11
Remove Tests..12

3.4 Design Rationale..13
4. Data Design..13

4.1 Data Description..13
Test data..13
Configuration data...13

4.2 Data Dictionary..14
5. Component Design...15

5.1 CmdLine..15
5.1.1 Classification ...15
5.1.2 Definition ..15
5.1.3 Responsibilities ...15
5.1.4 Constraints ..15
5.1.5 Composition ..15
5.1.6 Uses/Interactions ...15
5.1.7 Resources ..15
5.1.8 Processing..15
5.1.9 Interface/Exports ...16

5.2 AutoUnit Library..16
5.2.1 Classification ...16
5.2.2 Definition ..16
5.2.3 Responsibilities ...16
5.2.4 Constraints ..16
5.2.5 Composition ..16
5.2.6 Uses/Interactions ...16
5.2.7 Resources ..16
5.2.8 Processing..16
5.2.9 Interface/Exports ...17

2 of 18

6. Human Interface Design...17
6.1 Overview of User Interface..17
6.2 Screen Images..17

Help Screen...17
Example Create Tests interaction..17

7. Requirements Matrix..18
8. Appendices...18

3 of 18

1. Introduction

1.1 Purpose

This software design document describes a model of the architecture and system design of the
AutoUnit product (an implementation of the Automatic Random Regression Testing with Human
Oracle project). Its purpose is to describe the different parts of the system and to demonstrate how
they cooperate in order to satisfy the requirements outlined in the Software Requirements
Specification. The document should serve as a reference to developers working on the
implementation of the system as code.

1.2 Scope

AutoUnit is a software tool for analysing ANSI C source code, provided to it by a user, generating
tests for each function in the source code using the CppUnit implementation of the xUnit testing
framework and running these tests periodically. The objectives of the software are:

• To reduce the effort required by the developer for testing by suggesting tests and running
them automatically going forward.

• To reduce errors in the developers code and therefore save time which would normally be
spent debugging.

• To continuously attempt to uncover errors in previously error-free code

From a management and business point of view the objective of the software is to reduce the time
and cost associated with development and the provision of technical support.

1.3 Goals and Requirements

The model presented in the document addresses the following goals and requirements:

• Functional Requirements:

• Create tests for specified source-code

• Configure application settings

• List tests currently managed by the application

• Remove tests which are no longer needed or invalid due to merged code etc.

• Design: The core functionality must be contained within a library which can be used by the
command-line application. This allows the product features to be reused in other
applications in the future.

• Localization: The application must use Unicode throughout.

• Reporting: The application must log test failures.

• Auditing: The application must log its start time, end-time and any errors.

• System Management: The application uses two configuration files: one for application
settings and one containing the list of current tests (test database). These are stored as XML
which can be read, edited and copied between installations of the application.

• Workflow: Commands should be individually accessible from the command-line where

4 of 18

possible (i.e. with the exception of the create command which requires interaction always)

• Usability: Command-line interface should provide a usage screen, short and long versions of
commands and detailed error messages

• Reliability: Application should be able to cope with missing configuration file / test database

• Localization: Application text strings with the exception of terminology should be stored
externally (e.g. in XML with a locale identifier) where it can be translated easily.

• Compatiblity: The application needs to be compatible with all major operating systems
Linux, Windows and Mac.

2. System Overview
AutoUnit is an application which generates unit tests with random values for source-code written in
the C programming language. The application consists of a library which contains the core
functionality of the software and a command-line user interface which accesses the library functions
making them available to the user. In order to generate tests the application parses C source-code
and identifies function definitions. It then observes the data-type of each function's parameters to
determine what values need to be generated. The command-line application consults with the user
following initial test generation and execution to validate the result. Once validated, the tests are
added to a test database. The command-line application is designed to be run periodically using a
task scheduler in which case it calls on the library to run a set of tests from the test database and
save the test results for later retrieval by the user.

3. System Architecture

3.1 Architectural Strategies

3.1.1 Third-party libraries

CppUnit

The CppUnit library implements Kent Beck's unit testing patterns for the C++ language. Unit tests
written with CppUnit are written in C++ as well as testing C++ source-code. This product will
process C source-code only however the test cases which it generates will consist of C++ source-
code using the CppUnit library. Each generated test case will call a C function. We will use this
xUnit framework instead of one specifically written for the C programming language as most of our
research was carried out on it. Additionally, it will be easier to add support for the C++ language
later if we use CppUnit from the outset.

Xerces-C

The Xerces-C library provides advanced XML parsing and generation functionalities. XML has
been decided upon to represent the application configuration and the test database on disk. Using
XML for these files allows an administrator to visually inspect both, backup, restore, deploy them
across many computers running the product. The XML format used must be human-readable and
only contain elements (attributes will not be used).

5 of 18

Cross-platform Library

A decision has been made not to use a cross-platform library such as Qt or wxWidgets for the
following reasons:

• The application does not contain a large amount of operating system specific code.

• It can be difficult to build libraries within an environment such as the Minimal GNU on
Windows.

• Our developers are familiar with the Standard Template Library which is universally
available. We will use it where we would have used classes provided by the cross-platform
library (e.g. string and array classes).

Instead, a set of files containing operating system specific code will be developed. The files will
contain conditional definitions of the required functions for each OS.

3.2 Architectural Design

The software consists of two components:

• a library which contains functions fulfilling most of the requirements of the software

• a command-line application which acts as a user interface and fulfils requirements that
involve user interaction (i.e. the “Human Oracle” part of the project proposal description)

3.3 Decomposition Description

3.3.1 CmdLine component

This component consists of a single class which processes command-line parameters, calls the
appropriate library functions and displays output on the console.

3.3.2 AutoUnit library component

This component consists mainly of the following classes:

• AutoUnit – a class which provides instances the library

• Parser – a class containing code mostly generated by Lex and Yacc for parsing C source-
code

• Log – a class which records messages with a time-stamp

• Configuration – a class which stores the location of the compiler and linker and any flags

6 of 18

Illustration 1: Component diagram

that they require. It is also responsible for building source-code.

• TestDatabase – a class which manages a set of test objects

• Test – a class whose objects contain every detail of a test (e.g. location in source-code,
function name, parameters and expected result)

• XMLDocument – a class used by Configuration and TestDatabase to read and write XML

3.3.3 Sequence diagrams

The following sequence diagrams show the cooperation between the two components and their
classes when each of the Use Cases defined in the Software Requirements Specification occurs.

Create Tests

7 of 18

8 of 18

Configure Testing

9 of 18

Run Tests

10 of 18

List Tests

11 of 18

Remove Tests

12 of 18

3.4 Design Rationale

The command-line application and library together fulfil all of the requirements set out in the
Software Requirements Specification. The rationale behind keeping them separate is that a different
user interface (e.g. A graphical one) can be swapped into the project with ease because most of the
work performed by the application is done in the library. We may also want to use the library to
develop plug-ins etc., for different development IDEs in which case a UI might be generated by
implementing some interface provided by the IDE.

4. Data Design

4.1 Data Description

Test data

The application creates an instance of the Lex & Yacc based Parser class when it needs to parse
source-code (i.e. during a Create Tests operation). Once parsing has completed the Parser object
provides the application with a set of parse trees, one for each function found in the source-code.
Each of the nodes in these trees is actually an instance of a class defined by the application. A node
is only included in a parse tree if the token it represents is one of the following:

• Function definition

• Parameter list

• Identifier

• Type specifier

The application creates a Test object for each parse-tree returned by the Parser object and populates
this with information by traversing the parse-tree and interpreting the data which each node
provides. These Test objects are temporary during the Create Tests use case until the user confirms
the test and supplies the expected result (if the generated result was incorrect) at which time they
are passed to the Test Database object for storage. The Test Database object, like the Configuration
object, is instantiated when the application is initialized and is not destroyed until the application is
exiting. The Test Database class contains code to allow persistence of Test objects by serializing
them to XML using an XML Document object. The data component of each parameter is converted
to Base64 encoding before being serialized to XML. Base64 is an encoding for binary data which
allows it to be stored and transmitted as text. When the Test objects are being de-serialized from
XML their data needs to be decoded from Base64 to binary again. Each Test object contains an
array of Parameter objects which describe the individual parameters of the function the test is to be
carried out on. The first Parameter in the array always represents the return type and value of the
function. In order for the application to generate random values for a test, the Test object provides a
method for generating random values for its array Parameter objects. This method, in turn, calls a
method provided by each Parameter object which causes them to generate a random value for
themselves.

Configuration data

The configuration information for the application consists, simply, of a list of string and integer

13 of 18

values. The application instantiates a Configuration object when the application starts and this
object remains alive for the period of time that the application is running. The Configuration object
is responsible for storing the list of strings which represent the locations of the compiler and linker,
flags and options (i.e. include paths, library names) which the user wants to be used when their
source-code is being compiled to be tested. The responsibility of compiling and linking user source-
code has been delegated to the Configuration object since it contains most of the relevant
information. It provides this service to the rest of the application through its make() method.

4.2 Data Dictionary

The following is an overview the objects which are required for handling the applications data:

Test

function : String

location : String

parameters : Parameter[]

...

generateParamValues()

Parameter

name : String

type : enum

data : byte[]

size : int

...

generate()

Test Database

tests : Test[]

addTest(Test)

removeTest(Test)

load(String)

save(String)

Configuration

compilerPath : String

linkerPath : String

…

14 of 18

load(String)

save(String)

make(String)

5. Component Design

5.1 CmdLine

5.1.1 Classification

CmdLine is a class.

5.1.2 Definition

CmdLine provides the software's command-line interface.

5.1.3 Responsibilities

• Parse command-line parameters

• Call the required AutoUnit library functions based on parameters

• Take input from the console

• Display messages (including errors) on the console

5.1.4 Constraints

None.

5.1.5 Composition

No subcomponents.

5.1.6 Uses/Interactions

CmdLine is statically linked to the AutoUnit library

5.1.7 Resources

None.

5.1.8 Processing

• Creates an instance of the AutoUnit library

• Checks each command-line parameter against a list of valid commands

• Checks that the required number of supplementary parameters have been provided

• Calls library functions corresponding to the particular command issued by the user

15 of 18

• Provides output on the console (to indicate success / failure, error messages etc.)

• Takes input from the user if required

5.1.9 Interface/Exports

None.

5.2 AutoUnit Library

5.2.1 Classification

AutoUnit is a library.

5.2.2 Definition

AutoUnit provides the core functionality of the software through a Library class which it exposes
using a software interface.

5.2.3 Responsibilities

• Allow creation and storage of test details

• Allow the application to be configured and store the configuration

• Compile user source-code using an external compiler and linker

• Dynamically link to compiled user source-code and call functions to test them

• Save test results

• Log application errors

5.2.4 Constraints

None.

5.2.5 Composition

Parser class – composed main of code auto-generated by Lex & YACC.

Config class – which manages settings for the application and serializes them to/from XML

Test class – which holds information describing a test

TestDb class – which manages a list of Test objects and serializes them to/from XML

XMLDocument class – which provides XML reading and writing capabilities to other classes

Log class – which appends time-stamped messages to a specified text document

5.2.6 Uses/Interactions

The AutoUnit library requires the Apache Xerces-C library for the XML Document class to compile

16 of 18

5.2.7 Resources

None.

5.2.8 Processing

Instantiates and returns a Library class object to a calling application

5.2.9 Interface/Exports

Library class containing methods for:

• Creating tests

• Running tests

• Listing tests

• Removing tests

• Configuration

6. Human Interface Design

6.1 Overview of User Interface

The user interface provided with the software is command-line based.

6.2 Screen Images

Help Screen

17 of 18

Example Create Tests interaction

7. Requirements Matrix

Requirement Satisfied by

Create tests CmdLine, AutoUnit

Configure CmdLine, AutoUnit

Run tests CmdLine, AutoUnit

List tests CmdLine, AutoUnit

Remove tests CmdLine, AutoUnit

Design CmdLine, AutoUnit

Localization CmdLine, AutoUnit

Reporting AutoUnit

Auditing AutoUnit

System Management AutoUnit

Workflow CmdLine

Usability CmdLine

Reliability AutoUnit

Localization CmdLine

Compatiblity CmdLine, AutoUnit

8. Appendices

18 of 18

	1. Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Goals and Requirements

	2. System Overview
	3. System Architecture
	3.1 Architectural Strategies
	3.1.1 Third-party libraries
	CppUnit
	Xerces-C
	Cross-platform Library

	3.2 Architectural Design
	3.3 Decomposition Description
	3.3.1 CmdLine component
	3.3.2 AutoUnit library component
	3.3.3 Sequence diagrams
	Create Tests
	Configure Testing
	Run Tests
	List Tests
	Remove Tests

	3.4 Design Rationale

	4. Data Design
	4.1 Data Description
	Test data
	Configuration data

	4.2 Data Dictionary

	5. Component Design
	5.1 CmdLine
	5.1.1 Classification
	5.1.2 Definition
	5.1.3 Responsibilities
	5.1.4 Constraints
	5.1.5 Composition
	5.1.6 Uses/Interactions
	5.1.7 Resources
	5.1.8 Processing
	5.1.9 Interface/Exports

	5.2 AutoUnit Library
	5.2.1 Classification
	5.2.2 Definition
	5.2.3 Responsibilities
	5.2.4 Constraints
	5.2.5 Composition
	5.2.6 Uses/Interactions
	5.2.7 Resources
	5.2.8 Processing
	5.2.9 Interface/Exports

	6. Human Interface Design
	6.1 Overview of User Interface
	6.2 Screen Images
	Help Screen
	Example Create Tests interaction

	7. Requirements Matrix
	8. Appendices

